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ABSTRACT

This paper addresses an SEIR epidemic model watitelil resource for treatment and generalized $tudy the
dynamic behavior of the model. It is assumed thatiteatment rate is proportional to the numbegratients as long as this
number is below a certain capacity and it becorastant when that number of patients exceeds #madity. Existences
of disease-free and endemic equilibria for the rhade investigated. In this paper stability for tyestem of differential
equations for the generalized model has been stuahd it is shown that this kind of treatment egds to the existence

of multiple endemic equilibria where the basic pgprction number plays a big role in determiningrtbtability.
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1. INTRODUCTION

Most of the models in mathematical epidemiology @mpartmental models, with the population beingdsid
into compartments with the assumptions about thereand time rate of transfer from one compartnieainother. In the
paper [1] an SEIR epidemic model with a limitedongge for treatment is investigated by the authbhey assumed that
the treatment rate is proportional to the numbepatients as long as this number is below a cexapacity and it
becomes constant when that number of patients dgdbes capacity. Mathematical analysis is usestiudy the dynamic
behavior of this model. Existence and stabilitydefease-free and endemic equilibria are investigatbey have shown
that this kind of treatment rate leads to the exiseé of multiple endemic equilibria where the basjgroduction number

plays a big role in determining their stability.

Mathematical models have been used extensivelgsearch into the epidemiology of HIV/AIDS to hefpprove
our understanding of the major contributing factrghe pandemic. Cai L. et. al. [2] discussed &d/AIDS epidemic
model with treatment. The model allows for somes@téd individuals to move from the symptomatic gh&s the
asymptomatic phase by all sorts of treatment methdére first established the ODE treatment mod#l two infective

stages. Mathematical analyses establish that dimbtlynamics of the spread of the HIV infectioisedse are completely

determined by the basic reproduction nunﬁgr. If DOS 1, the disease-free equilibrium is globally stabiaereas the

unique infected equilibrium is globally asymptotigastable if DO> 1. Then, they introduced a discrete time delageho

to describe the effect of the time delay on theibtg of the endemically infected equilibrium.

Authors proposed an epidemic model with non-moriotortidence rate under a limited resource forttreant to
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understand the effect of the capacity for treatnmefB]. They assumed that treatment rate is priiqaal to the number of
infective when it is below the capacity and is daans when the number of infective is larger tham ¢hpacity. Existence
and stability of the disease free and endemic #xjuiin are investigated for both the cases. Sommenmical simulations
are given by them to illustrate the analytical teddathematical modeling for disease transmissohost population is of

great practical value in predicting and controllidigease spread .An SEIR model with varying popriasize and

O _ -
vaccination strategy is investigated in [4] Threeeshold parameter@o; U,; U, and], are obtained to govern the

disease eradication, which involve the total numbegrinfective and their proportion in the populatioParameter
conditions on the uniform persistence, the glolabiity of the disease — “free” equilibrium andhet “endemic”

equilibrium are derived. The global dynamics of mloth population size are studied. In [5] Yi N . Edl. Has been
studied the dynamical behaviors of an SEIR epidesystem governed by differential and algebraic &qoa with

seasonal forcing in transmission rate. The caseslgfone varying parameter, two varying parameas three varying
parameters are considered to analyze the dynaimétealviors of the system. For the case of one vgryarameter, the
periodic, and chaotic and hyper chaotic dynamiedidviors are investigated via the bifurcation diags, Lyapunov
exponent spectrum diagram and Poincare sectiorntheazases of two and three varying parametergaaunov diagram
is applied. A tracking controller is designed toméhate the hyperchaotic dynamical behavior ofghistem, such that the
disease gradually disappears. Further Zhang JaET6] studied an SEIR epidemic model with consiafiows of new

susceptibles, exposeds, infectives, and recovefidds.model also incorporates a population sizeeddpnt contact rate
and a disease-related death. As the infected dractannot be eliminated from the population, thiglkof model has only
the unique endemic equilibrium that is globally mgyotically stable. Under the special case wheeengw members of
immigration are all susceptible, the model congddnere shows a threshold phenomenon and a shieghdfd has been
obtained. The paper is organized as follows: Itiee@, a mathematical model is introduced andiobtathe equilibria of
the system, its existency and the basic reproductionber by next generation matrix method. In sec8, stability of

equilibria is studied. Finally, some conclusions drawn in section 4.
2. DERIVATION OF THE MODEL

Consider a population is divided into four epidelmiical classes which are susceptib® ) exposed (latently
infected) (E ), infectious (I ) and recoveredRR ). When there is an adequate contact of a susteptith an infective, the
susceptible becomes exposed and leaves the Sas#dence exposed individuals enter the cl&ss Now exposed
becomes infected and leaves the classHence infected individuals enter the clds®f infectious people and have a full
disease case of an infectious disease. Upon recthrey enter the clasR as well as goes back through an immediate

returning pathdl to the exposed class.

The flow of individual depicted in the followingatnsfer diagram (Figure 1):
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Figure 1: Transfer Diagram for Generalized SEIR Epdemic Model
The symbol are used here stand for
A= Recruitment rate,
[3 = infection rate,

M = natural death rate,

& = progression rate to symptoms development (tke ah which an Infected individual becomes infatsio

perunit time),
O = effective rate,

d = disease- related death,

r = removal rate (the rate at which an infectiousviaial recovers per unit time),
T (t) = treatment rate function,
Where A>0, >0, £>0,£>0,020,d>0,r>0

The differential equations corresponding to thegfar diagram are

ds

S = A-uS-pBsl

1 U B

Cll_'f:,gs|+5|—(/,1+g)E (1)
Ccll—ltsz—(,u+r+d+5)l—T(t)

dR

— =7l - R T (t .

TS T HRET(L)

Now, the treatment function is defined by
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Wherek=cl o-This means that the treatment rate is proportitimtiie number of
Infected people as long as the number of infectisdsss than or equal to a fixed value
|, But after that the treatment rate becomes constant

The variableR does not appear in the first three equations ofs@ )t is enough

To analyze the following reduced system

ds

—> = A-puS- sl

It U B

Z—E=,88I+5I—(,L1+£)E (2)
Z—ItzeE—(/J+r+d+5)l - T(t).

It follows from system (2) that

ds dE d
O A (S+E+ D) -T(t)< A-u(S+E+1) .
i H( )=T(t) 4o )

n- o

Then lim Sup(S+ E+ )< 2
u

So the feasible region for system (2) is

A
Q={(SEI):S+E+I<=,S>0,E=0,l = 0}.

Y7
The regiorQQ is positively invariant with respect to system. (2)

Hence, system (2) is considered mathematicallyeadiemiologically well posed i

2.1 Disease-Free Equilibrium and the Basic Reprodtion Number

A
System (2) always has the disease-free equilibrign= (—, 0, 0)
U

Now, the basic reproduction numb% will be found by using the method of Next genematmatrix.
Near the disease free equilibriuth< |O , SO system (2) becomes

ds
—=A-uS-9
o UusS—p
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d—E:,Bs +0l —(u+¢€)E

dt

di

E:‘fE—(y+r+d +J+c)l

Let X = (E,1,S)". System (3) can be written as

dX

—=F(X) -V(X

m (X) =V(X)

Where
5S —Ol +(u+¢€)E

FX)=| 0 | v(x)= —-cE+(u+r+d+c+9)l
0 -A+ (9 +uS

The Jacobian matrices &f (X) andV ( X) at the disease free equilibriun, are

Respectively,

DF (X,) = (E gj,DV(xco: [3/ fj

Where
A
o A U+E -9
F= M | AndV = iredictd
0 0 £ UHT c
EBA/ Alu+e)l
FvV™'= 1 PALU PAu*e) U Is the next generation matrix of system (2)
vi{ o 0
Where

V| =u[ (u+e)(u+r+d+c)]+ 40
Hence, the spectral radius 6tV " which is denoted by basic reproduction number,is

o BA
BT v aurr+avo]+ 5
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2.2 Endemic Equilibria

A
First of all, the disease — free equilibn, = (—, 0, 0) always exists wheh< |
ﬂ .

An endemic equilibria of system (2) satisfies
A-uS-p8Sl =0

BSI +31 -(u+e)E=0
EE-(u+r+d+9)I -T(t)=0 .

When 0<I <, , system (4) becomes

A-uS- Sl =0
BSl +ol - (u+e)E=0
EE-(u+r+d+c+0d)l =0

if R) >1, system (5) admits a unique positive soluti¥n = (S ,E ,I* ) given by

g= A E*:/J(,U+r+d+c+5)[R)_1] | I*=%[RO—1].

URy Be
Thus,|” <1, ifandonlyif R <1+pI,/ulP, .
So, X' is an endemic equilibrium of system (2) if andyoifll < R, < P,.

Now, when | > 1, system (4) becomes

A-uS-p£8Sl =0
BSl +31 -(u+¢e)E =0
eE-(u+r+d+d)I-k=0.

In order to obtain positive solutions of system (8¢ get from the first equation

of (6) S= A and E ZMI + k respectively.
U+ [l £ £

On substituting these values in second equati@ystem (6), we have
al”+bl +c=0
Where

a=pB[ (u+e)(u+r+d)+ud]>0,

Impact Factor (JCC): 2.0346
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b=(u+e)[u(u+r+d)+kB|-BA+ 11’5
=)+t +d+Q)+ PO+ (u+ €) (Bk—40) =R [ wu+€) (ur +d+0)+175
c= uk(u+e)>0.
Let the discriminant of (7) bA =b? —4ac .

If b=>0 , then (7) has no positive solution. Alsdif<0 , then (7) has no real

Solution. Thus we see thatlf<0 and A=0, then (7) has two positive solutions

|, and |, where

I, = ~b-VaA andl, = ~b+VA
2l ure)rrd)rud] T 28] (ure)(urr+d)+ ]

And this is possible if

(re)(Be-po) A HK+e)Bl ure)urr+d)pe]

o e (Ut a2 plure)(utr +d+ 070 3
Then

__A __A _ _Hutr+d+c+d)r,

S=a ST BTES e [R-1]

Then

X.=(S,E,l,) , i= 2 are endemic equilibria of system (2)lif> |,

—b-/2
28] (u+e&)(u+r+d)+ o]

Thus,l, > 1, = >, which implies that

(ure)(Br-pc)  2B[(u+e)(u+r+d)+ud] |,

R)>1+
p(u+e)(u+r+d+o)+u’d  p(u+e)(u+r+d+c)+u’s

IR

And I, <l, = R <P,
Thus the endemic equilibriX™ = (S ,E ,I ) of system (2) exists if and only <R, <P,
And two more endemic equlibriX; =(S,E ,1;) , i=1, 2 of system (2) exist if and only if

R,>F and R >P,.
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3. STABILITY OF EQUILIBRIA

(A) .Local and Global Stability of Disease-Free Edilibrium XO

Theorem 1: Thedisease-free equilibriurﬁ(0 is locally asymptotically stable.

Proof: By analyzing the eigen values of the  Jacobian cedri of  system

(2), we get results about the local stability afg@ equilibria .

The jacobian matrix evaluated 2, is

2o B
7,
J(Xe)= | 0 —(u+e) o
0 £ ~(u+r+d+c+9)

Then its characteristic equation is

Z’+b 2°+b,z+b, =0

Where

b=(3u+e+r+d+c+9),

b, = [y(y+g)+2/,1(/,1+r +d+c+o)+e(p+r+d+c+ )] ,

b, =4 (u+r+d+c+0)+eu(p+r+d+c) .

Clearly, b >0, b,>0 andbb,-b,>0 .

Therefore, by Routh-Hurwitz criteria, we conclutiattthe eigen values GJ(XO)
Are all negative. Thus, the disease-free equil'mrik(O is locally asymptotically stable.
Theorem 2:1f R, <1, the disease-free equilibriun s locally asymptotically
Stable and the disease die out. BuRf>1 , then X, is unstable .

Proof: To investigate the global stability No , consider the Lyapunov function

L=eE+(pu+e)l
oL_ G, o ad
Thena—é‘ & +(u+e) ”
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%:[5ﬂ§—(ﬂ+£)(/j+r +d +c) -]l

%: (,U+£)(,U+r+d+c)+ﬂ5](RO_1)|Soif R <1.

Hence, the maximal compact invariant sef(§ E, 1) DQ:%:O} is the

Singletor{ X O} Using Lasalle’s invariance principle proved thedrem.

(B) .Local and Global Stability of Endemic Equilibrium X

Theorem 3:if R) >1, then the endemic equilibriurX* is locally asymptotically
Stable.

Proof: The jacobian matrix evaluated X is

A
— O _
HR, ﬂ,uRO
J(X*): ,U(R)_l) —(/j+£) o
0 £ ~(u+r+d+c+9)

Then its characteristic equation is
A +ai’+ali+a, =0
Where

a, =[URy+2u+e+r+d+c+d]

azz[(,u+£+,uR0)(,u+r+d+C)+,uRO(,u+£+5)+,u§] ,

a, =24 (u+€) (u+r+d+c)+ud|R — [ (u+e) (u+r+d+c)+ud] Clearly, 3 >0 ,a,>0
if R>landaa,—a,>0.

Therefore, by Routh-Hurwitz criteria we concludattthe eigen values (ﬂ(X*) are all negative WheIRo >1

Thus, ifR) >1, then the endemic equilibriurX* is locally asymptotically stable.

Theorem 4:If R) >1 | the endemic equilibriurﬁ(* is globally asymptotically stable.

Proof: Now we consider the following Lyapunov function

www.iaset.us editor@iaset.us
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v __

dt

Deepti Mokati

v:(s—s*mij (E E-E In— j (p+ 6)( F ot Inl—*j.
S E < |
Then ﬂ:(l—SJdS [1_5](1_'54_(#4'5)[1 Jd|

dt S ) dt E )dt £ at

ﬂ_(1— j(A 15— ,33)+[1— j(ﬂs+5l (,L1+£)E)+(’u££)[ J[gE (u+r+d+5+0)1]

dt

SubstitutingA=8S 1" + uS we get

%{1— j(,gsw +1S — 1S- ﬁs)+[1— j(ﬂs+5| (,u+g)E)+('u—:£)[1—IT*JE£E—(,u+r+d+5+c)I]

(s-SY

- . |
S +BS1" -BS | §+,BSI—ﬂSIE+(,u+£)E —(u+é¢) EI_

——('u:g)(ﬂﬂ +d +5+c)| +—(/J:£)(u+r +d+5+c)l* +4l -9l EE_ (,u+g)E—

Using the valuessE =(u+r+d+J+c)l” andeE=(y+r+d+J+c)]

v __(S-SY S _=ELE S,SEI_
&« s +(”+€)E(3 S SE’ E*Ij+5l(8 SE sto

dV — — * — *
Thereforea—O holds only WhenS_S , E=E and | =1 .

(C) .Local Stability of Endemic Equilibria X1and X2

For proof of the theorem 5 we use the following hem
[2]
Lemma: Let M be a 3 x 3 real matrix. iff (M ) , det(M ) and de( M ) are all

Negative, then all of the eigenvalues M have negative real parts.

Theorem 5: The endemic equiIibriaP(i , 1=1,2 5re locally asymptotically stable if

§<1+2/1+r +d+0
l. £

Proof: By analyzing the Jacobian matrix at these equdite find that
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4= Bl 0 -BS,
J(X,) = B, —(u+e) )
0 £ ~(p+r+d+9)
A
- O —
S BS
— _ﬁall 5'1
I(x)=|p, E£21% 5
(X)=| 8 3
0 . k—lgE1

The second additive compound matrix t;f( xl) is given by

—u=Pl, —(u+e) o BS
J(Xl)[2]= £ ~p=pPl, —(u+r+d+9) 0
0 B, ~(u+e)=(u+r+d+9)

tr(3(%,))=-2-P3L L K _£E ¢ g

S. El El Il I1

similarly, tr (J(X,))<0.

Now, det(d (X,))= -é[ﬁfAEl-ﬁfA-%ﬂi’ZSﬂ £E,[<0 and

det(J(X,))<0.

det(d (X, J )= €B1,- u-&)[Bl,- u-r-d-0) U-e-1-d-3)]
~e[o(2u-e-r-d-3)- A S,]

Le.det(J (X, j2] )< Ojf ,82|12[2/J+I’ +d +5+5]<:32§|15-
And similarly, det(J (X, J)< 0

Thus, by applying above lemma we can say that tioemic equilibriaxi , 1=1,2 gre locally asymptotically

2u+r+d+9

<1+
stable if | P
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CONCLUSIONS

In this paper, | have generalized an SEIR epidemiclel of Sarah A. Al-Sheikh [19]. In this model e

considered that the infected individuals enterhi® tecovered class by transmission nateT () as well as return to the
exposed class by transmission rate . | have found disease-free and endemic equilfioridhe model and analyzed the
stability criteria for the both equilibria and falithat ifR) <1, there exists no positive equilibrium and the Bsefree
equilibrium is global asymptotically stable and tfisease dies out .But IRO >1 the disease-free equilibrium becomes
unstable and the disease persists. Then in thes tbesendemic equilibria is exists and global aggtigally stable and

also discussed locally asymptotic stability criéefor two endemic equilibria?(1 and)(2 .In the paper, throughout the

work if O =0 | I found the results discussed by Al-Sheikh Bakafor the model [1] .
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