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ABSTRACT 

This paper addresses an SEIR epidemic model with limited resource for treatment and generalized it to study the 

dynamic behavior of the model. It is assumed that the treatment rate is proportional to the number of patients as long as this 

number is below a certain capacity and it becomes constant when that number of patients exceeds this capacity. Existences 

of disease-free and endemic equilibria for the model are investigated. In this paper stability for the system of differential 

equations for the generalized model has been studied and it is shown that this kind of treatment rate leads to the existence 

of multiple endemic equilibria where the basic reproduction number plays a big role in determining their stability. 
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1. INTRODUCTION 

Most of the models in mathematical epidemiology are compartmental models, with the population being divided 

into compartments with the assumptions about the nature and time rate of transfer from one compartment to another. In the 

paper [1] an SEIR epidemic model with a limited resource for treatment is investigated by the authors. They assumed that 

the treatment rate is proportional to the number of patients as long as this number is below a certain capacity and it 

becomes constant when that number of patients exceeds this capacity. Mathematical analysis is used to study the dynamic 

behavior of this model. Existence and stability of disease-free and endemic equilibria are investigated. They have shown 

that this kind of treatment rate leads to the existence of multiple endemic equilibria where the basic reproduction number 

plays a big role in determining their stability. 

Mathematical models have been used extensively in research into the epidemiology of HIV/AIDS to help improve 

our understanding of the major contributing factors to the pandemic. Cai L. et. al. [2] discussed an HIV/AIDS epidemic 

model with treatment. The model allows for some infected individuals to move from the symptomatic phase to the 

asymptomatic phase by all sorts of treatment methods. Here first established the ODE treatment model with two infective 

stages. Mathematical analyses establish that the global dynamics of the spread of the HIV infectious disease are completely 

determined by the basic reproduction number0ℜ . If 0 1ℜ ≤ , the disease-free equilibrium is globally stable, whereas the 

unique infected equilibrium is globally asymptotically stable if 0ℜ > 1. Then, they introduced a discrete time delay model 

to describe the effect of the time delay on the stability of the endemically infected equilibrium. 

Authors proposed an epidemic model with non-monotonic incidence rate under a limited resource for treatment to 
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understand the effect of the capacity for treatment in [3]. They assumed that treatment rate is proportional to the number of 

infective when it is below the capacity and is constant when the number of infective is larger than the capacity. Existence 

and stability of the disease free and endemic equilibrium are investigated for both the cases. Some numerical simulations 

are given by them to illustrate the analytical result. Mathematical modeling for disease transmission in host population is of 

great practical value in predicting and controlling disease spread .An SEIR model with varying population size and 

vaccination strategy is investigated in [4] Three threshold parameters 0ℜ ; 0

∧
ℜ ; 

_

0ℜ  and 
~

0ℜ  are obtained to govern the 

disease eradication, which involve the total number of infective and their proportion in the population. Parameter 

conditions on the uniform persistence, the global stability of the disease – ‘‘free” equilibrium and the ‘‘endemic” 

equilibrium are derived. The global dynamics of model in population size are studied. In [5] Yi N . ET. al. Has been 

studied the dynamical behaviors of an SEIR epidemic system governed by differential and algebraic equations with 

seasonal forcing in transmission rate. The cases of only one varying parameter, two varying parameters and three varying 

parameters are considered to analyze the dynamical behaviors of the system. For the case of one varying parameter, the 

periodic, and chaotic and hyper chaotic dynamical behaviors are investigated via the bifurcation diagrams, Lyapunov 

exponent spectrum diagram and Poincare section. For the cases of two and three varying parameters, a Lyapunov diagram 

is applied. A tracking controller is designed to eliminate the hyperchaotic dynamical behavior of the system, such that the 

disease gradually disappears. Further Zhang J. ET. al. [6] studied an SEIR epidemic model with constant inflows of new 

susceptibles, exposeds, infectives, and recovereds. This model also incorporates a population size dependent contact rate 

and a disease-related death. As the infected fraction cannot be eliminated from the population, this kind of model has only 

the unique endemic equilibrium that is globally asymptotically stable. Under the special case where the new members of 

immigration are all susceptible, the model considered here shows a threshold phenomenon and a sharp threshold has been 

obtained. The paper is organized as follows: In section 2, a mathematical model is introduced and obtained the equilibria of 

the system, its existency and the basic reproduction number by next generation matrix method. In section 3, stability of 

equilibria is studied. Finally, some conclusions are drawn in section 4. 

2. DERIVATION OF THE MODEL  

Consider a population is divided into four epidemiological classes which are susceptible (S ), exposed (latently 

infected) (E ), infectious (I ) and recovered (R ). When there is an adequate contact of a susceptible with an infective, the 

susceptible becomes exposed and leaves the class S  . Hence exposed individuals enter the class E  . Now exposed 

becomes infected and leaves the classE . Hence infected individuals enter the class I  of infectious people and have a full 

disease case of an infectious disease. Upon recovery they enter the class R  as well as goes back through an immediate 

returning path Iδ   to the exposed class.  

The flow of individual depicted in the following transfer diagram (Figure 1): 
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Figure 1: Transfer Diagram for Generalized SEIR Epidemic Model 

The symbol are used here stand for  

A = Recruitment rate, 

β = infection rate, 

µ  = natural death rate, 

ε  = progression rate to symptoms development (the rate at which an Infected individual becomes infections 

perunit time), 

δ = effective rate, 

d = disease- related death, 

r = removal rate (the rate at which an infectious individual recovers per unit time), 

( )T t = treatment rate function, 

Where A > 0, β > 0, µ > 0, ε > 0, δ 0≥  , d > 0 , r > 0  

The differential equations corresponding to the transfer diagram are 

( )

( ) ( )

( )

(1 )

.

d S
A S S I

d t
d E

S I I E
d t
d I

E r d I T t
d t
d R

r I R T t
d t

µ β

β δ µ ε

ε µ δ

µ

= − −

= + − +

= − + + + −

= − +

 

Now, the treatment function is defined by 



42                                                                                                                                                                                                 Deepti Mokati 

 
Impact Factor (JCC): 2.0346                                                                                                                   NAAS Rating: 3.19 

( ) 0

0

; 0

k;

cI I I
T t

I I

≤ ≤ 
=  > 

 

Where 0k c I= .This means that the treatment rate is proportional to the number of  

Infected people as long as the number of infectives is less than or equal to a fixed value  

0I  But after that the treatment rate becomes constant. 

The variable R does not appear in the first three equations of (1), so it is enough  

To analyze the following reduced system 

( )

( )

( 2 )

( ) .

d S
A S S I

d t
d E

S I I E
d t
d I

E r d I T t
d t

µ β

β δ µ ε

ε µ δ

= − −

= + − +

= − + + + −

 

It follows from system (2) that 

( )( ) ( )
ds dE dI

A S E I T t A S E I
dt dt dt

µ µ+ + = − + + − ≤ − + +  .  

Then lim (S E I)
n

A
Sup

µ→ ∞
+ + ≤ .  

So the feasible region for system (2) is  

{( , , ): , 0, 0, 0}
A

S E I S E I S E I
µ

Ω = + + ≤ > ≥ ≥ . 

The regionΩ  is positively invariant with respect to system (2). 

Hence, system (2) is considered mathematically and epidemiologically well posed in Ω  

2.1 Disease-Free Equilibrium and the Basic Reproduction Number 

System (2) always has the disease-free equilibrium 0 ( ,0,0)
A

X
µ

=  

Now, the basic reproduction number 0R  will be found by using the method of Next generation matrix. 

Near the disease free equilibrium, I < 0I  , so system (2) becomes 

dS
A S SI

dt
µ β= − −  
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( )dE
SI I E

dt
β δ µ ε= + − +                                                                                                                              (3) 

( )dI
E r d c I

dt
ε µ δ= − + + + +  

Let ( , , )TX E I S= . System (3) can be written as 

(X) (X)
dX

F V
dt

= −  

Where 

( ) 0

0

SI

F X

β 
 =  
 
 

, 

( )
( )

( )

I E

E r d c I
V X

A SI S

δ µ ε
ε µ δ

β µ

− + + 
 

− + + + + + =
 − + +
  
 

 

The Jacobian matrices of ( )F X  and ( )V X  at the disease free equilibrium 0X  are  

Respectively, 

0

0
( )

0 0

F
DF X

 
=  

 
 , 0

1 2

0
( )

V
DV X

J J

 
=  

 
 

Where  

0

0 0

A

F

β
µ

 
 =
 
 
 

 And V
r d c

µ ε δ
ε µ δ
+ − 

=  − + + + + 
 

1 / ( ) /1

0 0

A A
FV

V

εβ µ β µ ε µ− + 
=  

 
Is the next generation matrix of system (2)  

Where 

[ ] 2( )( )V r d cµ µ ε µ µ δ= + + + + +   

Hence, the spectral radius of 1FV − which is denoted by basic reproduction number,is 

[ ]
1

0 2
( )

( )( )

A
R F V

r d c

εβρ
µ µ ε µ µ δ

−= =
+ + + + +
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2.2 Endemic Equilibria  

First of all, the disease – free equilibria 0 ( ,0,0)
A

X
µ

=  always exists when 0I I≤
.
 

An endemic equilibria of system (2) satisfies 

( )
( ) ( )

0

0 (4 )

0 .

A S S I

S I I E

E r d I T t

µ β
β δ µ ε
ε µ δ

− − =
+ − + =

− + + + − =

 When  00 I I< ≤  , system (4) becomes  

( )
( )

0

0 (5 )

0 .

A S S I

S I I E

E r d c I

µ β
β δ µ ε
ε µ δ

− − =
+ − + =

− + + + + =

 

if 0 1R > , system (5) admits a unique positive solution 
* * * *( , , )X S E I=  given by 

*

0

A
S

Rµ
= ,  [ ]*

0

( )
1

r d c
E R

µ µ δ
βε

+ + + += −   ,  [ ]*
0 1I R

µ
β

= −  . 

Thus, 
*

0I I≤    if and only if   0 0 01 /R I Pβ µ≤ + �   . 

So, *X  is an endemic equilibrium of system (2) if and only if 0 01 R P< ≤ . 

Now, when 0I I>  , system (4) becomes  

( )
( )

0

0 ( 6 )

0 .

A S S I

S I I E

E r d I k

µ β
β δ µ ε
ε µ δ

− − =
+ − + =

− + + + − =

 

In order to obtain positive solutions of system (6), we get from the first equation 

Of (6) 
A

S
Iµ β

=
+

 and 
r d k

E I
µ δ

ε ε
+ + += +  respectively.

 On substituting these values in second equation of system (6), we have  

2 0aI bI c+ + =                                                                                                                                                     (7)  

Where 

[ ]( ) ( ) 0a r dβ µ ε µ µδ= + + + + >  , 
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[ ] 2( ) ( )b r d k Aµ ε µ µ β εβ µ δ= + + + + − +  

2 2
0( )( ) ( )( ) ( )( )r d c k c R r d cµ µ ε µ µ δ µ ε β µ µ µ ε µ µ δ   = + + + + + + + − − + + + + +    , 

( ) 0c kµ µ ε= + > . 

Let the discriminant of (7) be 
2 4b ac∆ = − . 

If  0b ≥  , then (7) has no positive solution. Also if 0∆ <  , then (7) has no real  

Solution. Thus we see that if 0b <  and 0∆ ≥ , then (7) has two positive solutions  

1I  and 2I  where 

[ ]1 2 ( ) ( )

b
I

r dβ µ ε µ µδ
− − ∆=

+ + + +
 and [ ]2 2 ( ) ( )

b
I

r dβ µ ε µ µδ
− + ∆=

+ + + +
 

And this is possible if  

[ ]
0 12 2

2 ( ) ( )( )( )( )
R 1 .

( )( ) ( )( )

k r dk c
P

r d c r d c

µ µ ε β µ ε µ µδµ ε β µ
µ µ ε µ µ δ µ µ ε µ µ δ

+ + + + ++ −≥ + +
+ + + + + + + + + +

�  

Then 

1
1

A
S

Iµ β
=

+
 , 2

2

A
S

Iµ β
=

+
 , [ ]1 2 0

( )
1

r d c
E E R

µ µ δ
βε

+ + + += = −   

Then  

( , , )i i i iX S E I=  , 1,2i=  are endemic equilibria of system (2) if 0iI I>   

Thus, 1 0I I> ⇔ [ ] 02 ( ) ( )

b
I

r dβ µ ε µ µδ
− − ∆ >

+ + + +
 which implies that  

[ ] 0
0 22 2

2 ( ) ( )( ) ( )
1

( ) ( ) ( ) ( )

r d Ik c
R P

r d c r d c

β µ ε µ µδµ ε β µ
µ µ ε µ µ δ µ µ ε µ µ δ

+ + + ++ −> + +
+ + + + + + + + + +

�  

And 2 0I I< ⇔ 0 2R P<  

Thus the endemic equilibria 
* * * *( , , )X S E I=  of system (2) exists if and only if 0 01 R P< ≤  

And two more endemic equlibria ( , , )i i i iX S E I=  , 1,2i=  of system (2) exist if and only if  

0 1R P>  and 0 2R P> . 
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3. STABILITY OF EQUILIBRIA  

(A) .Local and Global Stability of Disease-Free Equilibrium 0X  

Theorem 1: The disease-free equilibrium 0X  is locally asymptotically stable. 

Proof: By analyzing the eigen values of the Jacobian matrices of system 

(2), we get results about the local stability of these equilibria . 

The jacobian matrix evaluated at 0X is 

( ) ( )
( )

0

0

0

0

A

J X

r d c

βµ
µ

µ ε δ
ε µ δ

 − − 
 

= − + 
 − + + + + 
 
 

  

Then its characteristic equation is  

3 2
1 2 3 0z b z b z b+ + + =  

Where  

( )1 3b r d cµ ε δ= + + + + +  , 

( ) ( ) ( )2 2b r d c r d cµ µ ε µ µ δ ε µ δ= + + + + + + + + + + +    , 

( ) ( )2
3b r d c r d cµ µ δ εµ µ= + + + + + + + +  . 

Clearly, 1 0b >  , 3 0b >  and 1 2 3 0b b b− >  . 

Therefore, by Routh-Hurwitz criteria, we conclude that the eigen values of 0( )J X  

Are all negative. Thus, the disease-free equilibrium 0X is locally asymptotically stable. 

Theorem 2: If 0 1R <  , the disease-free equilibrium 0X is locally asymptotically  

Stable and the disease die out. But if 0 1R >  , then   0X is unstable . 

Proof: To investigate the global stability of0X  , consider the Lyapunov function  

( )L E Iε µ ε= + +  

Then ( )dL dE dI

dt dt dt
ε µ ε= + +  
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( ) ( )[ ] I
dL A

r d c
dt

εβ µ ε µ µδ
µ

= − + + + + −  

( )( ) 0( 1) 0
dL

r d c R I
dt

µ ε µ µδ= + + + + + − ≤    if 0 1R <  . 

Hence, the maximal compact invariant set in {( , , ) : 0}
dL

S E I
dt

∈Ω =  is the  

 Singleton 0{ }X  Using Lasalle’s invariance principle proved the theorem. 

(B) .Local and Global Stability of Endemic Equilibrium *X  

Theorem 3: if 0 1R > , then the endemic equilibrium *X  is locally asymptotically  

Stable. 

Proof: The jacobian matrix evaluated at *X  is 

( ) ( ) ( )
( )

0
0

*
0

0

1

0

A
R

R

J X R

r d c

µ β
µ

µ µ ε δ
ε µ δ

 − − 
 
 = − − +
 − + + + + 
 
 

  

Then its characteristic equation is  

3 2
1 2 3 0a a aλ λ λ+ + + =  

Where 

[ ]1 0 2a R r d cµ µ ε δ= + + + + + +  , 

( ) ( ) ( )2 0 0a R r d c Rµ ε µ µ µ µ ε δ µδ= + + + + + + + + +    , 

( ) ( ) ( ) ( )3 02a r d c R r d cµ µ ε µ µδ µ µ ε µ µδ= + + + + + − + + + + +        Clearly, 1 0a >  , 3 0a >  

if 0 1R >  and 1 2 3a a a− > 0 . 

Therefore, by Routh-Hurwitz criteria we conclude that the eigen values of 
*( )J X  are all negative when 0 1R >  

Thus, if 0 1R > , then the endemic equilibrium *X  is locally asymptotically stable. 

Theorem 4: If 0 1R >  , the endemic equilibrium *X  is globally asymptotically stable. 

Proof: Now we consider the following Lyapunov function  
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* * * * *
* * *

( )
ln ln ln

S E I
V S S E E E I I I

S E I

µ ε
ε
+     = − + − − + − −     

     
. 

Then     
* * *( )

1 1 1
dV S dS E dE I dI

dt S dt E dt I dt

µ ε
ε

     += − + − + −     
     

 

( ) ( )
* * *( )

1 ( ) 1 ( ) 1 [ ]
dV S E I

A S SI SI I E E r d c I
dt S E I

µ εµ β β δ µ ε ε µ δ
ε

     += − − − + − + − + + − − + + + +     
     

 

 Substituting 
* * *A S I Sβ µ= +  we get 

( ) ( ) ( )
* * *

* * *1 ( ) 1 ( ) 1 [ ]
dV S E I

S I S S SI SI I E E r d c I
dt S E I

µ ε
β µ µ β β δ µ ε ε µ δ

ε
+     

= − + − − + − + − + + − − + + + +     
     

( ) ( )

( ) ( ) ( ) ( ) ( )

* 2 * * *
* * * * * *

* *
*

( )dV S S S E I
S I S I S I SI E E

dt S S E I

E I
r d c I r d c I I I E

E I

µ β β β β µ ε µ ε

µ ε µ ε
µ δ µ δ δ δ µ ε

ε ε

−= − + − + − + + − +

+ +
− + + + + + + + + + + − − +

 

Using the values ( )* *E r d c Iε µ δ= + + + +  and ( )E r d c Iε µ δ= + + + +  

( )
* 2 * * * * *

* *
* * * * *

( )
3 2 0

dV S S S SE I EI S SE I
E I

dt S S S EI E I S S EI
µ µ ε δ   −= − + + − − − + + − ≤   

   
 

Therefore, 0
dV

dt
=  holds only when 

*S S=  , 
*E E=  and  

*I I= . 

(C) .Local Stability of Endemic Equilibria 1X and 2X  

For proof of the theorem 5 we use the following lemma 

Lemma: Let M  be a 3 x 3 real matrix. If ( ) ( ) ( )[2],det , dettr M M and M  are all  

Negative, then all of the eigenvalues of  M  have negative real parts. 

Theorem 5: The endemic equilibria iX  , 1,2i =  are locally asymptotically stable if  

2
1i

i

S r d

I

µ δ
ε

+ + +< +   

Proof: By analyzing the Jacobian matrix at these equilibria we find that 
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( ) ( )
( )

( )

1 1

1 1

1
1

1 1 1
1 1

1

1

1

0

0

0

0

I S

J X I

r d

A
S

S

S I I
J X I

E

k E

I

µ β β
β µ ε δ

ε µ δ

β

β δβ δ

εε

− − − 
 = − + 
 − + + + 

 
− − 
 
 − −=  
 
 −
 
 

 

The second additive compound matrix of  ( )1J X  is given by 

( )[ ]
( )

( )
( ) ( )

1 1
2

1 1

1

0

0

I S

J X I r d

I r d

µ β µ ε δ β
ε µ β µ δ

β µ ε µ δ

− − − + 
 = − − − + + + 
 − + − + + + 

 

1 1 1 1
1

1 1 1 1 1

( ( ) ) 0
S I I EA k

tr J X
S E E I I

β δ ε−= − − + − <  and 

Similarly, ( )( )2 0tr J X < . 

Now, 
2

1 1 1 1 1
1 1

1
det( ( )) 0

A k
J X A E A S I E

E S

δβε βε β ε
 

= − − − + < 
 

 and  

( )( )2det 0J X <  . 

And 

[2]
1 1 1

2
1 1

det ( ( ) ) ( 2 )[ ( 2 ) ( 2 )]

[ ( 2 ) ]

J X I I r d r d

r d S I

β µ ε β µ δ µ ε δ
ε δ µ ε δ β

= − − − − − − − − − − − − −

− − − − − − −  

I.e.
[2]

1det ( ( ) ) 0J X <  if [ ]2 2
1 2I r dβ µ δ ε+ + + + < 2

1 1S Iβ ε . 

And similarly, 
[2]

2det ( ( ) ) 0J X <  

Thus, by applying above lemma we can say that the endemic equilibria iX  , 1,2i =  are locally asymptotically 

stable if 
2

1i

i

S r d

I

µ δ
ε

+ + +< +  . 
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CONCLUSIONS 

In this paper, I have generalized an SEIR epidemic model of Sarah A. Al-Sheikh [19]. In this model I have 

considered that the infected individuals enter to the recovered class by transmission rate ( )r T t+ as well as return to the 

exposed class by transmission rate Iδ  . I have found disease-free and endemic equilibria for the model and analyzed   the 

stability criteria for the both equilibria and found that if 0 1R < , there exists no positive equilibrium and the Disease-free 

equilibrium is global asymptotically stable and the disease dies out .But if 0 1R >  the disease-free equilibrium becomes 

unstable and the disease persists. Then in this case the endemic equilibria is exists and global asymptotically stable and 

also discussed locally asymptotic stability criteria for two endemic equilibria 1X  and 2X  .In the paper, throughout the 

work if 0δ =  , I found the results discussed by  Al-Sheikh Sarah A. for the model [1] . 
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